BCA蛋白定量法是目前广泛使用的蛋白定量方法之一。本产品是基于BCA(Bicin-choninic Acid)法研制而成,实现了对蛋白质进行快速、稳定、灵敏的浓度测定。其原理是在碱性环境下蛋白质分子中的肽链结构能与Cu2+络合生成络合物,同时将Cu2+还原成Cu+,BCA试剂可敏感特异地与Cu+结合,形成稳定的有颜色的复合物,其在562nm处有高的光吸收值,颜色的深浅与蛋白质浓度成正比,可根据吸收值的大小来测定蛋白质的含量。本试剂盒含有牛血清白蛋白(BSA)溶液作为蛋白质标准品溶液,测定范围为20~2,000μg/mL。
试剂A
试剂B
BSA标准品(5mg/mL)
100mL
3mL
1mL
100mL×5
3mL×5
1mL×5
准确性高
变异系数远小于考马斯亮蓝染色法线性范围宽
灵敏,检测范围:20~2,000 μg/mL兼容性好
与金属离子、还原剂、螯合剂及去污剂兼容性较好稀释BSA标准品:
取120μL蛋白标准品(需完全融解),用与待测蛋白样品相一致的稀释液稀释至300μL,使终浓度为2mg/mL。
注意:为方便起见,也可以用0.9%生理盐水或PBS缓冲液稀释标准品。
配置显色工作液:
a. 计算显色工作液总量:
工作液总量 = (BSA标准品样本个数+待测样本个数)×复孔数×每个样本显色工作液体积
举例:BSA标准品样本个数为9个,待测样本个数3个,复孔数3个。
显色工作液总量 = (9个BSA标准品样本+3个待测样本)×3个复孔×200μL(每个样本工作液体积) = 7.2 mL
b. 根据计算出的所需显色工作液用量,将试剂A和试剂B按照50:1的体积比,配制显色工作液,充分混匀:
注意:
⑴由于加样可能存在误差,建议配制BCA工作液时,多配制1~2个孔的量;
⑵新配制的BCA工作液室温密封条件下可稳定保存24h。
定量检测:
① 将稀释后的标准品按 0,1,2,4,6,8,10,15,20μL分别加到96孔板中,加入用于稀释标准品的溶液补足到20μL(为避免枪尖损失,可先补足稀释液后加入标准品)
② 将样品适当稀释(可以多作几个梯度,如 2倍、4倍、8倍稀释),加20μL到 96 孔板的样品孔中;
③ 各孔加入200 μL显色工作液,充分混匀,盖上96孔板盖,37℃孵育30 min,冷却至室温;
注意:也可以室温放置2h,或60℃放置30min。BCA法测定蛋白浓度时,吸光度会随着时间的延长不断加深。并且显色反应会因温度升高而加快。如果蛋白浓度较低,可在较高温度孵育,或延长孵育时间。
④ 用酶标仪测定每个样品及BSA标准品的A562,或540~590 nm之间的其它波长的吸光度,注意要减去空白对照(稀释液+工作液)的吸光度。
⑤ 绘制标准曲线,计算样品中的蛋白浓度。
注意:数据处理时需要去除明显错误的值。待测样品浓度可以从标准曲线中查得, 实际浓度需要乘以样品的稀释倍数。如果是计算机绘制的曲线,可以从计算机给出的线性方程式计算出待测样品的浓度。
1. 本产品可以采用酶标仪(微孔检测法)或者分光光度计(试管检测法)测定蛋白浓度,如使用普通的分光光度计测定,需根据比色皿的最小检测体积,适当加大BCA工作液的用量使其不小于最小检测体积,样品和标准品的用量可相应按比例放大。使用分光光度计测定蛋白浓度时,每个试剂盒可以测定的样品数量可能会显著减少;
2. 试剂在低温条件或长期保存出现沉淀时,可搅拌或37℃温育使其溶解;
3. 建议每次测定蛋白样品时,都须绘制标准曲线,以获得准确数据;
4. BSA标准品的稀释液需与待测样品的稀释液一致(可用1×PBS或0.9%生理盐水进行稀释);
5. 如待测样品中含较多的干扰物质(具体见附表),可采用其它蛋白定量产品;
6. 为了您的安全和健康,请穿实验服并戴一次性手套操作;
7. 本产品仅限科研使用。
Xiong, Q., Cao, L., Ma, C. et al. Close relatives of MERS-CoV in bats use ACE2 as their functional receptors. Nature (2022).(IF 69.504)
Li, Z., Liu, G., Yang, L., Sun, M., Zhang, Z., Xu, Z., ... & Yang, Z. (2023). BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period. Protein & Cell, pwad036.(IF 21.1)
Zhang, S., Xia, S., Chen, L., Chen, Y., & Zhou, J. (2023). Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor‐Specific and Ferroptosis‐Augmented Sonodynamic Therapy. Advanced Science, 2206009.(IF 17.521)
Zhang, X., Wang, Z., Liu, Q., Hu, X., Mei, J., Xu, D., ... & Zhu, C. (2024). Targeted modulation and enhancement of macrophages via sonodynamic therapy-driven cupferroptosis-like stress for implant-associated biofilm infections. Nano Today, 54, 102092.(IF 17.4)
Wu, Q., Wang, W., Zhang, C., You, Z., Zeng, Y., Lu, Y., ... & Song, Y. (2023). Capturing nascent extracellular vesicles by metabolic glycan labeling-assisted microfluidics. Nature Communications, 14(1), 6541.(IF 16.6)
Hu, Z., Wang, D., Gong, J., Li, Y., Ma, Z., Luo, T., ... & Song, Z. (2023). MSCs Deliver Hypoxia‐Treated Mitochondria Reprogramming Acinar Metabolism to Alleviate Severe Acute Pancreatitis Injury. Advanced Science, 2207691.(IF 15.1)
Wang, F., Wu, Q., Jia, G., Kong, L., Zuo, R., Feng, K., ... & Kang, Q. (2023). Black Phosphorus/MnO2 Nanocomposite Disrupting Bacterial Thermotolerance for Efficient Mild‐Temperature Photothermal Therapy. Advanced Science, 10(30), 2303911.(IF 15.1)
Zhang, L., Zhu, Y., Wei, X., Chen, X., Li, Y., Zhu, Y., ... & Pang, Z. (2022). Nanoplateletsomes restrain metastatic tumor formation through decoy and active targeting in a preclinical mouse model. Acta Pharmaceutica Sinica B.(IF 14.903)
Liu, Y., Tang, S., Wang, X., Wang, X., Tang, X., Wu, Q., ... & Ding, J. (2023). A novel thermostable and salt-tolerant carboxylesterase involved in the initial aerobic degradation pathway for pyrethroids in Glycomyces salinus. Journal of Hazardous Materials, 451, 131128.(IF 14.224)
Wu, S., Xu, J., Chen, W., Wang, F., Tan, X., Zou, X., ... & Yan, S. (2024). Protein nanoscaffold enables programmable nanobody-luciferase immunoassembly for sensitive and simultaneous detection of aflatoxin B1 and ochratoxin A. Journal of Hazardous Materials, 462, 132701.(IF 13.6)
Dai, Z., Zhu, W., Hou, Y., Zhang, X., Ren, X., Lei, K., ... & Kuang, M. (2023). METTL5-mediated 18S rRNA m6A modification promotes oncogenic mRNA translation and intrahepatic cholangiocarcinoma progression. Molecular Therapy, 31(11), 3225-3242.(IF 12.4)
Liu, J., Peng, F., Cheng, H., Zhang, D., Zhang, Y., Wang, L., ... & Peng, C. (2023). Chronic cold environment regulates rheumatoid arthritis through modulation of gut microbiota-derived bile acids. Science of The Total Environment, 903, 166837.(IF 9.8)
Deng, S., Li, C., Chen, J., Cui, Z., Lei, T., Yang, H., & Chen, P. (2023). Effects of triclosan exposure on stem cells from human exfoliated deciduous teeth (SHED) fate. Science of The Total Environment, 905, 167053.(IF 9.8)
Yan, G., Li, L., Zhu, S., Wu, Y., Liu, Y., Zhu, L., ... & Wang, X. (2021). Single-cell transcriptomic analysis reveals the critical molecular pattern of UV-induced cutaneous squamous cell carcinoma. Cell death & disease, 13(1), 1-12.(IF 9.685)
Luo, L., Liu, M., Fan, Y., Zhang, J., Liu, L., Li, Y., Zhang, Q., Xie, H., Jiang, C., Wu, J., Xiao, X., & Wu, Y. (2022). Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice. Journal of Neuroinflammation, 19, 141.(IF 9.587)
Xu, L., Mu, J., Ma, Z., Lin, P., Xia, F., Hu, X., ... & Li, F. (2023). Nanozyme-Integrated Thermoresponsive In Situ Forming Hydrogel Enhances Mesenchymal Stem Cell Viability and Paracrine Effect for Efficient Spinal Cord Repair. ACS Applied Materials & Interfaces.(IF 9.5)
Wang, Y., Niu, H., Li, L., Han, J., Liu, Z., Chu, M., ... & Zhao, J. (2023). Anti-CHAC1 exosomes for nose-to-brain delivery of miR-760-3p in cerebral ischemia/reperfusion injury mice inhibiting neuron ferroptosis. Journal of Nanobiotechnology, 21(1), 1-19.(IF 9.429)
Wang, Z., Zhang, T., Jia, F., Ge, C., He, Y., Tian, Y., ... & Jiang, Y. (2023). Homologous Sequential Immunization Using Salmonella Oral Administration Followed by an Intranasal Boost with Ferritin-Based Nanoparticles Enhanced the Humoral Immune Response against H1N1 Influenza Virus. Microbiology Spectrum, e00102-23.(IF 9.043)
Zhang, Y., Zhang, J., Zhao, Y., Zhang, Y., Liu, L., Xu, X., ... & Fu, J. (2022). ChemR23 activation attenuates cognitive impairment in chronic cerebral hypoperfusion via inhibiting NLRP3 inflammasome-induced neuronal pyroptosis.(IF 9)
Ding, J., Liu, Y., Gao, Y., Zhang, C., Wang, Y., Xu, B., ... & Huang, Z. (2022). Biodegradation of λ-cyhalothrin through cell surface display of bacterial carboxylesterase. Chemosphere, 289, 133130.(IF 8.943)
Lu, A. X., Lin, Y., Li, J., Liu, J. X., Yan, C. H., & Zhang, L. (2023). Effects of food-borne docosahexaenoic acid supplementation on bone lead mobilisation, mitochondrial function and serum metabolomics in pre-pregnancy lead-exposed lactating rats. Environmental Pollution, 337, 122613.(IF 8.9)
Li, Z., Teng, M., Jiang, Y., Zhang, L., Luo, X., Liao, Y., & Yang, B. (2022). YTHDF1 Negatively Regulates Treponema pallidum-Induced Inflammation in THP-1 Macrophages by Promoting SOCS3 Translation in an m6A-Dependent Manner. Frontiers in Immunology, 13.(IF 8.786)
Hua, T., Wang, H., Fan, X., An, N., Li, J., Song, H., ... & Yuan, H. (2022). BRD4 inhibition attenuates inflammatory pain by ameliorating NLRP3 inflammasome-induced pyroptosis. Frontiers in immunology, 13: 837977.(IF 8.786)
Deng, S., Chen, X., Lei, Q., & Lu, W. (2022). AQP2 Promotes Astrocyte Activation by Modulating the TLR4/NFκB-p65 Pathway Following Intracerebral Hemorrhage. Frontiers in immunology, 13, 847360-847360.(IF 8.786)
Li, S., Wang, R., Huang, L., Jiang, Y., **ng, F., Duan, W., ... & **e, H. (2023). Promotion of diced cartilage survival and regeneration with grafting of small intestinal submucosa loaded with urine‐derived stem cells. Cell Proliferation, e13542.(IF 8.5)
Li, Z., Xu, Y., Lu, S., Gao, Y., & Deng, Y. (2023). Bone mesenchymal stem cell extracellular vesicles delivered miR let-7-5p alleviate endothelial glycocalyx degradation and leakage via targeting ABL2. Cell Communication and Signaling, 21(1), 205.(IF 8.4)
Lin, D., Zhang, Y., Wang, S., Zhang, H., Gao, C., Lu, F., ... & Yang, B. (2023). Ganoderma lucidum polysaccharide peptides GL-PPSQ2 alleviate intestinal ischemia-reperfusion injury via inhibiting cytotoxic neutrophil extracellular traps. International Journal of Biological Macromolecules, 125370.(IF 8.2)
Zhou, Y., Jia, Y., Xu, N., Tang, L., & Chang, Y. (2023). Auricularia auricula-judae (Bull.) polysaccharides improve obesity in mice by regulating gut microbiota and TLR4/JNK signaling pathway. International Journal of Biological Macromolecules, 250, 126172.(IF 8.2)
Zhang, X., Zhang, S., Qi, J., Zhao, F., Lu, Y., Li, S., ... & Tan, J. (2023). PDGFBB improved the biological function of menstrual blood-derived stromal cells and the anti-fibrotic properties of exosomes. Stem Cell Research & Therapy, 14(1), 1-14.(IF 8.079)
Zhou, Y., Zhao, X., Hu, W., Ruan, F., He, C., Huang, J., & Zuo, Z. (2021). Acute and subacute oral toxicity of propylene glycol enantiomers in mice and the underlying nephrotoxic mechanism. Environmental Pollution, 290, 118050.(IF 8.071)
Li, S., Wang, Y., Jiang, H., Bai, Y., Chen, T., Chen, M., ... & Chen, Y. (2023). Display of CCL21 on cancer cell membrane through genetic modification using a pH low insertion peptide. International Journal of Biological Macromolecules, 240, 124324.(IF 8.025)
Lai, J., Li, Y., Ran, M., Huang, Q., Huang, F., Zhu, L., ... & Wu, J. (2023). Xanthotoxin, a novel inducer of platelet formation, promotes thrombocytopoiesis via IL-1R1 and MEK/ERK signaling. Biomedicine & Pharmacotherapy, 163, 114811.(IF 7.419)
Liu, Z., Nan, P., Gong, Y., Tian, L., Zheng, Y., & Wu, Z. (2023). Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy. Biomedicine & Pharmacotherapy, 164, 114897.(IF 7.419)
Tan, X., Gong, L., Li, X., Zhang, X., Sun, J., Luo, X., ... & Han, S. (2021). Promethazine inhibits proliferation and promotes apoptosis in colorectal cancer cells by suppressing the PI3K/AKT pathway. Biomedicine & Pharmacotherapy, 143, 112174.(IF 7.419)
Fang, J., Wu, H., Zhang, J., Mao, S., Shi, H., Yu, D., ... & Shi, H. (2022). A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation. Biomedicine & Pharmacotherapy, 150, 113071.(IF 7.419)
Wang, C. X., Wang, T. T., Zhang, K. D., Li, M. Y., Shen, Q. C., Lu, S. Y., & Zhang, J. (2022). Pan-KRAS inhibitors suppress proliferation through feedback regulation in pancreatic ductal adenocarcinoma. Acta Pharmacologica Sinica, 1-13.(IF 7.169)
Xu, X., Chang, J., Wang, P., Liu, C., Liu, M., Zhou, T., ... & Yan, G. (2023). Combination of glycyrrhizic acid and compound probiotics alleviates deoxynivalenol-induced damage to weaned piglets. Ecotoxicology and Environmental Safety, 256, 114901.(IF 7.129)
Wang, F., Kong, L., Wang, W., Shi, L., Wang, M., Chai, Y., ... & Kang, Q. (2021). Adrenomedullin 2 improves bone regeneration in type 1 diabetic rats by restoring imbalanced macrophage polarization and impaired osteogenesis. Stem cell research & therapy, 12(1), 1-15.(IF 6.832)
Yang, H., Li, S., Qu, Y., Li, L., Li, Y., & Wang, D. (2022). Anti-Colorectal Cancer Effects of Inonotus hispidus (Bull.: Fr.) P. Karst. Spore Powder through Regulation of Gut Microbiota-Mediated JAK/STAT Signaling. Nutrients, 14(16), 3299.(IF 6.706)
Wang F, Wang W, Kong L, et al. Accelerated bone regeneration by Adrenomedullin 2 through improving the coupling of osteogenesis and angiogenesis via β-catenin signaling[J]. Frontiers in Cell and Developmental Biology, 2021, 9.(IF 6.684)
Gu, K., Wang, T., Peng, L., & Zhao, Y. (2022). FIP-fve Stimulates Cell Proliferation and Enhances IL-2 Release by Activating MAP2K3/p38α (MAPK14) Signaling Pathway in Jurkat E6-1 Cells. Frontiers in Nutrition, 9.(IF 6.59)
Wang, F., Qian, H., Kong, L., Wang, W., Wang, X., Xu, Z., ... & Kang, Q. (2021). Accelerated bone regeneration by astragaloside IV through stimulating the coupling of osteogenesis and angiogenesis. International Journal of Biological Sciences, 17(7), 1821.(IF 6.58)
Wang, Z., Ao, X., Shen, Z., Ao, L., Wu, X., Pu, C., ... & Xu, X. (2021). TNF-α augments CXCL10/CXCR3 axis activity to induce Epithelial-Mesenchymal Transition in colon cancer cell. International Journal of Biological Sciences, 17(11), 2683.(IF 6.58)
Chen Q, Yin H, Pu N, et al. Chemokine C‐C motif ligand 21 synergized with programmed death‐ligand 1 blockade restrains tumor growth[J]. Cancer science, 2021, 112(11): 4457-4469.(IF 6.518)
Li, H., Yan, X., & Ou, S. (2022). Correlation of the prognostic value of FNDC4 in glioblastoma with macrophage polarization. Cancer cell international, 22(1), 1-11.(IF 6.429)
Liu, Y., Wang, X., Nong, S., Bai, Z., Han, N., Wu, Q., Huang, Z., & Ding, J. (2022). Display of a novel carboxylesterase CarCby on Escherichia coli cell surface for carbaryl pesticide bioremediation. Microbial cell factories, 21(1), 97.(IF 6.352)
Zhao, Y., Jiang, Q., Guo, L., Fan, D., Wang, M., & Zhao, Y. (2023). Apigenin and its octoic acid diester attenuated glycidol-induced autophagic-dependent apoptosis via inhibiting the ERK/JNK/p38 signaling pathways in human umbilical vein endothelial cells (HUVECs). Current Research in Food Science, 100447.(IF 6.269)
Liu, C., Zhang, L., Liu, Y., Zhao, Q., Pan, Y., & Zhang, Y. (2021). Value of pyruvate carboxylase in thyroid fine-needle aspiration wash-out fluid for predicting papillary thyroid cancer lymph node metastasis. Frontiers in oncology, 11, 1625.(IF 6.244)
Shao, D., Gao, Z., Zhao, Y., Fan, M., Zhao, X., Wei, Q., ... & Ma, B. (2023). Sulforaphane Suppresses H2O2-Induced Oxidative Stress and Apoptosis via the Activation of AMPK/NFE2L2 Signaling Pathway in Goat Mammary Epithelial Cells. International Journal of Molecular Sciences, 24(2), 1070.(IF 6.208)